1. Общая характеристика царства дробянки. Морфологические группы бактерий, отделы, представители. Отличия от растений. Значение бактерий в природе и для человека.
Царство дробянки насчитывает около 4 500 видов микроскопических, обычно одноклеточных организмов. Они столь малы, что нам трудно даже и представить их действительные размеры. Их измеряют в тысячных долях миллиметра — микронах. В царстве выделяют два отдела: бактерии (от греч. «бактериои» — палочка) ицианобактерии (от лат. «цианос» — голубой, лазурный и греч. «6актерион»).

1.1.1 Царство дробянки
У доядерных организмов настоящее ядро с ядерной мембраной отсутствует, генетический материал сосредоточен в нуклеоиде. ДНК обычно образует одну замкнутую в кольцо нить, которая не связана с белками и с РНК и не является ещё настоящей хромосомой, устроенной гораздо сложнее. Типичного полового процесса нет, но обмен генетическим материалом иногда осуществляется во время других (парасексуальных) процессов, не сопровождающихся слиянием нуклеоидов. Прокариоты лишены центриолей, микротрубочек и митотического веретена (деление клетки амитотическое), пластид и митохондрий. Опорным каркасом клеточной стенки служит гликопептид муреин. Жгутики отсутствуют или относительно простые. Многие представители этого надцарства могут фиксировать молекулярный азот. Облигатные и факультативные анаэробы и аэробы. Питание путём всасывания питательных веществ через клеточную стенку, т. е. абсорбтивное (сапротрофное или паразитное) или автотрофное. Сюда входит одно царство дробянки (Mychotalia, или Mychota, от слова «михи», обозначающего комочки хроматина, неспособного к митозу). Многие авторы употребляют малоудачное название Monera, предложенное ещё Э. Геккелем для якобы безъядерного «рода» Protamoeba, который оказался всего лишь безъядерным фрагментом обыкновенной амёбы.










Сходства и отличия царств живых организмов. Представители.

Отличительные признаки живых организмов.

1. Живые организмы — важный компонент биосферы. Клеточное строение — характерный признак всех организмов, за исключением вирусов. Наличие в клетках плазматической мембраны, цитоплазмы, ядра. Особенность бактерий: отсутствие оформленного ядра, митохондрий, хлоропластов. Особенности растений: наличие в клетке клеточной стенки, хлоропластов, вакуолей с клеточным соком, автотрофный способ питания. Особенности животных: отсутствие в клетках хлоропластов, вакуолей с клеточным соком, оболочки из клетчатки, гетеротрофный способ питания.

2. Наличие в составе живых организмов органических веществ: сахара, крахмала, жира, белка, нуклеиновых кислот и неорганических веществ: воды и минеральных солей. Сходство химического состава у представителей разных царств живой природы.

3. Обмен веществ — главный признак живого, включающий питание, дыхание, транспорт веществ, их преобразование и создание из них веществ и структур собственного организма, освобождение энергии в одних процессах и использование в других, выделение конечных продуктов жизнедеятельности. Обмен веществами и энергией с окружающей средой.

4. Размножение, воспроизведение потомства — признак живых организмов. Развитие дочернего организма из одной клетки (зиготы при половом размножении) или группы клеток (при вегетативном размножении) материнского организма. Значение размножения в увеличении численности особей вида, их расселении и освоении новых территорий, сохранении сходства и преемственности между родителями и потомством в ряду многих поколений.

5. Наследственность и изменчивость — свойства организмов. Наследственность — свойство организмов передавать присущие им особенности строения и развития потомству. Примеры наследственности: из семян березы вырастают растения березы, у кошки рождаются похожие на родителей котята. Изменчивость — возникновение у потомства новых признаков. Примеры изменчивости: растения березы, выросшие из семян материнского растения одного поколения, различаются по длине и окраске ствола, числу листьев и др.

6. Раздражимость — свойство живых организмов. Способность организмов воспринимать раздражения из окружающей среды и в соответствии с ними координировать свою деятельность, поведение — комплекс приспособительных двигательных реакций, возникающих в ответ на разнообразные раздражения из окружающей среды. Особенности поведения животных. Рефлексы и элементы рассудочной деятельности животных. Поведение растений, бактерий, грибов: разные формы движения — тро-пизмы, настии, таксисы.
Царства живых организмов
По жизнедеятельности и особенностям строения весь современный животный мир делят на пять царств: Грибы, Животные, Растения, Бактерии и Вирусы.
Царство грибов

Представители царства грибов
Грибы являются самой многочисленной группой растительных организмов. Они играют очень важную роль в жизни человека и природы. Грибы являются причиной болезни живых организмов. Также они могут испортить продукты питания и даже продукцию промышленного производства. Грибы способны поразить древесину, книги.
Царство грибов сочетает в себе признаки животных и растений. Грибы схожи с растениями в следующих признаках:
Хорошо выражена клеточная стенка.
В вегетативном состоянии они неподвижны.
Размножение происходит с помощью спор.
Способны синтезировать витамины.
Адсорбиция, то есть поглощают пищу с помощью всасывания.
С животными грибы объединяет:
Разнородность в составе пищевых цепей.
Образование и выделение мочевины – продукта метаболизма.
Накопление запасного вещества – гликогена.
Наличие хитина в клеточной стенке.
В клетках отсутствуют фотосинтезирующие пигменты и хлоропласты.
Грибы считаются самой древней группой эукариотных организмов. Они не имеют эволюционных связей с растениями. Так считают потому, что грибы имеют свои особенности в строении и жизнедеятельности.
Науке известно, что грибов около 100 тысяч видов, но ученые считают, что реально их может быть больше. По всему миру ежегодно ученые открывают порядка 1000 новых видов грибов. Большинство представителей царства находятся на суше. Они встречаются там, где существует жизнь. То есть, можно сказать, что грибы встречаются повсеместно.
Царство растений

Представители царства растений
В текущий момент найдено около 350 000 видов различных растений. Растения способны получать из неорганических веществ органические с помощью солнечного света. Этот процесс называется фотосинтезом. В этом состоит главное отличие растений от грибов и животных. Растениями питаются все другие виды живых организмов. Они не способны к активному движению, по крайней мере, подавляющее большинство из них. В клетках растений содержится хлорофилл, который необходим им для осуществления процесса фотосинтеза, а также их клетки имеют жесткую целлюлозную стенку. В углеводных запасах растений, как правило, содержится крахмал.
Царство животных

Представители царства животных
Животных на планете Земля огромное множество. Их насчитывается около 2 миллионов видов. Они имеют обширную населенность. Животные обитают в водной, воздушной, почвенной и наземно-воздушной средах. Принадлежность к классу животных определяется не по одному признаку, а по классу признаков. Наибольшие различия у животных наблюдаются в поведении и строении организма. К общим признакам относятся передвижение и то, что все животные являются гетеротрофами, так как они не могут создавать из неорганических веществ органические. Также к ним относится питание. Животные питаются готовыми органическими веществами. В клетках животных отсутствует целлюлозная оболочка, вакуоль с клеточным соком и пластидами.
Царство бактерии

Представители царства бактерий
Бактерии также называют микроорганизмами или микробами, потому что они имеют микроскопические размеры: от 0,1 до 30 мкм. Имеют клеточное строение. Являются мельчайшими прокариотическими организмами.
Бактерии обитают по всему миру. Они живут в полярных областях и горячих источниках, в почве, воздухе, воде. Их находят на теле и внутри животных, а также в растениях. Большинство их находится в почве.
Различают несколько групп бактерий, которые различаются по особенностям и форме. Они подразделяются на следующие группы: кокки, которые имеют шаровидную форму, бациллы, их форма напоминает прямую палочку, вибрионы, которые имеют изогнутую форму, спириллы, в форме изогнутой спирали, и другие.
Царство вирусы
Вирусы имеют мельчайший размер, который составляет от 12 до 500 мкм. Только самых крупных из всех вирусов можно увидеть в оптический микроскоп при очень сильном увеличении, которое составляет примерно 1800-2200 раз. К таким вирусам относится вирус оспы. Мелкие вирусы имеют размеры крупной молекулы белка.
Вирусы имеют настолько маленький размер, что могут проникать сквозь поры специальных бактериальных фильтров, которые задерживают бактерии, но пропускают вирусы. Поэтому иногда говорят о «фильтрующихся вирусах». Вирусы паразитируют клетки живых организмов. Вирусы бактерий ученые называют фагами.












3.Отличия растений и животных. Строение растительной клетки. Способы деления клеток. Обмен веществ.
Как считают большинство биологов, различия между растениями и животными можно разделить на три группы:
1) по структуре клеток и их способности к росту;
2) способу питания;
3) способности к движению. Отнесение к одному из царств, проводится не по каждому признаку, а по совокупности различий. Так, кораллы, речная губка-бодяга всю жизнь остаются неподвижными, и тем не менее, имея в виду другие свойства, их относят к животным. Существуют насекомоядные растения, которые по способу питания относятся к животным. Выделяют и переходные типы, как, скажем, Евглена зеленая, которая питается как растение, а двигается, как животное. И все же три отмеченные группы различий помогают в подавляющем большинстве случаев.
Кристаллы растут, но не воспроизводятся; растения воспроизводятся, но не двигаются; животные двигаются и воспроизводятся. В то же время у растений некоторые клетки сохраняют способность к активному росту на протяжении всей жизни организма. В пластидах – белковых телах клеток растений – заключен хлорофилл. Его наличие связано с основной космической функцией растений – улавливанием и превращением солнечной энергии. Эта функция определяет строение растений. «Свет лепит формы растений, как из пластического материала», – писал австрийский ботаник И. Визнер.
По словам Вернадского, «в биосфере видна неразрывная связь между освещающим ее световым солнечным излучением и находящимся в ней зеленым живым миром организованных существ». У животных клеток есть центриоли, но нет хлорофилла и клеточной стенки, мешающей изменению формы. Что касается различий в способе питания, то большинство растений необходимые для жизни вещества получают в результате поглощения минеральных соединений. Животные питаются готовыми органическими соединениями, которые создают растения в процессе фотосинтеза.
В ходе развития биосферы происходила дифференциация органов по функциям, которые они выполняют, и возникли двигательная, пищеварительная, дыхательная, кровеносная, нервная системы и органы чувств.
Строение растительной клетки


Долгое время считали, что клетка — это масса цитоплазмы, которая окружена клеточной оболочкой и содержит ядро. Такое представление просуществовало до усовершенствования методов микроскопического исследования. Разрешающая сила самого сильного светового микроскопа составляет около 150—200 нм и не позволяет увидеть многие органеллы, а тем более рассмотреть их внутреннее строение. Последнее стало возможным лишь после изобретения электронного микроскопа. Разрешающая способность электронного микроскопа примерно на 2—3 порядка выше светового микроскопа и составляет около 0,1—1 нм. Правда, ценность электронного микроскопа снижается из-за ряда технических трудностей. Низкая проникающая способность электронов заставляет использовать ультратонкие срезы — 300—500 нм. Кроме того, в большинстве случаев наблюдение в электронном микроскопе производится на фиксированных срезах. В связи с этим интерпретация картин, видимых в электронный микроскоп, должна проводиться с осторожностью. Не исключена возможность, что та или иная картина представляет собой артефакт (следствие отмирания). И все же применение электронного микроскопа значительно продвинуло знания о структуре и ультраструктуре клетки. Рассмотрение с помощью электронного микроскопа показало, что клетка обладает чрезвычайно сложной структурной организацией и представляет собой систему, дифференцированную на отдельные органеллы.

В растительной клетке следует различать клеточную оболочку и содержимое. Основные жизненные свойства присуши именно содержимому клетки — протопласту. Кроме того, для взрослой растительной клетки характерно наличие вакуоли — полости, заполненной клеточным соком. Протопласт состоит из ядра, цитоплазмы и включенных в нее крупных органелл, видимых в световой микроскоп: пластид, митохондрий. В свою очередь цитоплазма представляет собой сложную систему с многочисленными мембранными структурами, такими, как аппарат Гольджи, эндоплазматический ретикулум, лизосомы, и немембранными структурами—микротрубочки, рибосомы и др. Все указанные органеллы погружены в матрикс цитоплазмы — гиалоплазму, или основную плазму. Каждая из органелл имеет свою структуру и ультраструктуру. Под ультраструктурой понимается расположение в пространстве отдельных молекул, составляющих данную органеллу. Даже с помощью электронного микроскопа далеко не всегда можно увидеть ультраструктуру более мелких органелл (рибосом). По мере развития науки открываются все новые структурные образования, находящиеся в цитоплазме, и в этой связи наши современные представления о ней ни в коей мере не являются окончательными. Размеры клеток и отдельных органелл приблизительно следующие: клетка 10 мкм, ядро 5—30 мкм, хлоропласт 2—6 мкм, митохондрии 0,5—5 мкм, рибосомы 25 нм. В создании надмолекулярных структур отдельных органоидов клетки большое значение имеют так называемые слабые химические связи. Наиболее важную роль играют водородные, вандерваальсовы и ионные связи. Важнейшей особенностью является то, что энергия образования этих связей незначительна и лишь немного превышает кинетическую энергию теплового движения молекул. Именно поэтому слабые связи легко возникают и легко разрушаются. Средняя продолжительность жизни слабой связи составляет лишь долю секунды. Наряду со слабыми химическими связями большое значение имеют гидрофобные взаимодействия. Обусловлены они тем, что гидрофобные молекулы или части молекул, находящиеся в водной среде, располагаются так, чтобы не контактировать с водой. При этом молекулы воды, объединяясь друг с другом, как бы выталкивают неполярные группы, сближая их. Именно слабые связи определяют в большой степени конформацию (форму) таких макромолекул, как белки и нуклеиновые кислоты, лежат в основе взаимодействия молекул и, как следствие, в образовании и самосборке субклеточных структур, в том числе органелл клетки.
Для поддержания сложной структуры цитоплазмы необходима энергия. Согласно второму закону термодинамики всякая система стремится к уменьшению упорядоченности, к энтропии. Поэтому любое упорядоченное расположение молекул требует притока энергии извне. Выяснение физиологических функций отдельных органелл связано с разработкой метода их изоляции (выделения из клетки). Таков метод дифференциального центрифугирования, который основан на разделении отдельных компонентов протопласта. В зависимости от ускорения удается выделить все более и более мелкие фракции органелл. Совместное применение методов электронной микроскопии и дифференциального центрифугирования дало возможность наметить связи между структурой и функциями отдельных органелл.
Митотический цикл. Митоз
Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.
Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.
Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.
Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.
Синтетический период (2n 4c) — репликация ДНК.
Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.
Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.
Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.
Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).
Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Митотический цикл, митоз: 1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.
Яндекс.ДиректВсе объявления
А вы знаете, какая завтра погода?Элементы Яндекса для браузера. Свежая информация о погоде всегда на экране!element.yandex.ru0+

Новый Яндекс.Браузер!Удобные закладки и надежная защита. Браузер для приятных прогулок по сети!browser.yandex.ru0+

Интернет зоомагазин «СЫТЫЙДРУГ»Если нету корма вдруг заходи на Сытый Друг! Доставка Зоотоваров.Адрес и телефон sytyidrug.ru

Учебники биологии. Дешево,скидки!Учебники и рабочие тетради. Доставка РФ. Спец.цены для учителей, школ! Опт!umnikk.ru18+
Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.
Мейоз
Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.
Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).
Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.
Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом. Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.
Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).




4.История развития ботаники. Частные науки о растениях Зарождение ботаники

Как стройная система знаний о растениях ботаника оформилась к XVII-XVIII векам, хотя многие сведения о растениях были известны и первобытному человеку, так как жизнь его была связана с полезными, главным образом пищевыми, лекарственными и ядовитыми растениями. Тексты, которые можно в какой-то мере считать ботаническими, известны из древнейших памятников письменности Двуречья (Шумер, Вавилон, Ассирия) и долины Нила (Древний Египет). Эти тексты, так же как и легендарная китайская книга о травах «Бэнь цао», относимая к концу 3-го тысячелетия до н. э., представляли собой скорее сочинения по прикладной ботанике, так как в основном содержали сведения о пищевых и лекарственных растениях.
Первыми книгами, в которых растения описывались не только в связи с их полезностью, были произведения греческих учёных Аристотеля и особенно его ученика Теофраста, который сделал первую в истории науки попытку классифицировать растения, разделив их на деревья, кустарники, полукустарники и травы; среди последних он различал многолетники, дву- и однолетники. Теофраст был назван «отцом ботаники» Он отчётливо представлял себе строение цветка, в частности положение завязи в нём, и различия между сростнолепестными и свободнолепестными венчиками. В его «Исследовании о растениях» описано около 480 растений. Римский натуралист Плиний Старший в своей «Естественной истории» привёл все известные его современникам сведения о природе; он упомянул около 1000 видов растений, описав их достаточно точно.
В течение примерно 1500 лет, со времени Теофраста и Плиния Старшего, накопление знаний о растениях шло преимущественно вне Европы. В Индии в 1-м тысячелетии до н. э. появляется т. н. «Аюрведа» — «наука о жизни», включающая описание многих лекарственных растений Индии. Комментарии и дополнения к «Аюрведе» содержатся в сочинениях индийских врачей Чарака (X—VIII вв. до н. э.), Сушрута и Вадбака (VIII—VII вв. до н. э.).
Арабская экспансия во 2-й половине 1-го тысячелетия н. э. значительно расширила горизонты античности. Особое значение имели труды таджикского учёного Ибн Сины (Авиценны), описавшего в сочинении «Канон врачебной науки» множество растений, до того неизвестных европейцам. Единственным достижением европейской науки в области ботаники были труды немецкого философа и естествоиспытателя Альберта фон Больштедта (Альберт Великий), установившего, в частности, на основании разницы в строении стебля различие между однодольными и двудольными растениями.
Конец средневековья
В эпоху великих открытий значительно возрос интерес к растениям, пока в основном как источнику лекарств, пряностей и новых пищевых продуктов. Появляются (а вскоре и печатаются) «травники» с описанием всё возрастающего числа растений, создаются первые «сухие сады» — гербарии, организуются настоящие ботанические сады. Всё это способствовало накоплению новых фактов и созданию первых общих концепций, главным образом в области классификации растений. Так, немецкий ботаник О. Брунфельс различает растения «совершенные», то есть несущие цветки, и «несовершенные», то есть лишённые их; итальянский врач и ботаник А. Чезальпино (в латинском произношении Цезальпин), опубликовавший важнейшее ботаническое сочинение эпохи — книгу «О растениях», в предисловии к ней сделал попытку классифицировать растения, привлекая в дополнение к обычному в то время делению растений на деревья, кустарники и травы также признаки цветков, плодов и семян. Швейцарский ботаник Иоганн Баугин (Жан Боэн) в своей «Всеобщей истории растений», опубликованной (1650) после его смерти, описал около 5000 растений. Его брату Каспару Баугину ботаника обязана созданием бинарной номенклатуры, то есть наименованием каждого растения двумя словами, из которых первое обозначает родовое название, а второе — видовое. Как известно, такой порядок наименования растений впоследствии был узаконен К. Линнеем и существует по сей день.
XVI—XVII века
Для этого периода характерно не только развитие систематики. Изобретение микроскопа привело к открытию клеточного строения растений. Первые наблюдения в этой области были сделаны английским учёным Р. Гуком. Позднее итальянец М. Мальпиги и англичанин Н. Грю заложили основы анатомии растений. Голландец Я. Б. ван Гельмонт поставил первый опыт по физиологии растений, вырастив ветку ивы в бочке и установив, что почти 40-кратное увеличение её в весе за 5 лет не сопровождалось сколь-нибудь значительным уменьшением веса земли. Немецкий ботаник Р. Камерариус впервые обосновал наличие полового процесса у растений.
В России в XV-XVII веках переводят с греческого, латинского и европейских языков и переписывают (а позднее печатают) описания лекарственных растений («травники», или, как их тогда называли, «вертограды»). Многие из них редактировались с учётом местных условий, главным образом добавлялись указания на места произрастания тех или иных растений (например: «растеть на Руси в Драгомилове»).
XVIII век
Открытия в разных областях ботаники в XVIII в., разработка различных концепций принесли свои плоды позднее. Тем не менее это столетие в основном может быть охарактеризовано как столетие ботанической систематики и связывается главным образом с именем шведского ботаника К. Линнея. Положив в основу своей искусственной системы строение цветка, Линней разбил мир растений на 24 класса. Система Линнея не надолго пережила своего создателя, однако значение её в истории Б. огромно. Впервые было показано, что каждое растение может быть помещено в какую-то определенную категорию в соответствии с характерными для него признаками. Поистине титаническая работа, проделанная Линнеем, явилась основой для всех последующих исследований в области систематики растений. Младшие современники Линнея — французы М. Адансон, Ж. Ламарк и особенно три брата де Жюсьё (Антуан, Бернар и Жозеф) и их племянник Антуан Лоран, основываясь на работах Линнея (а также на работах Д. Рея, К. Баугина и Ж. Турнефора), разработали естественные классификации растений, где в основу тех или иных систематических групп были положены признаки «родства», под которыми, впрочем, понималась неопределённая «естественная близость». Выдающиеся натуралисты 18 в. уделяли много внимания общим вопросам Б. Так, русский академик К. Ф. Вольф в своей «Теории генерации» (1759) показал пути формирования органов растений и превращение одних органов в другие. Эти идеи особенно занимали немецкого поэта И. В. Гёте, опубликовавшего в 1790 книгу «Метаморфоз растений», полную блестящих прозрений. Наличие пола у растений окончательно было установлено немецкими ботаниками И. Кёльрёйтером, получившим и тщательно изучившим межвидовые гибриды табака, гвоздики и других растений, а также исследовавшим способы их опыления насекомыми, и К. Шпренгелем, опубликовавшим книгу «Раскрытая тайна природы в строении и оплодотворении цветов » (1793).
В XVIII в. в России шло интенсивное развитие научных исследований, в частности в созданной Петром I Академии наук в Петербурге. В её Кунсткамере начали впервые собирать ботанические коллекции. В 1714 был организован Аптекарский огород — основа будущего Императорского ботанического сада и нынешнего Ботанического института. Особое значение для развития русской и мировой Б. имели географические экспедиции АН, в которых принимали участие ботаники: С. П. Крашенинников, опубликовавший «Описание земли Камчатки», И. Г. Гмелин — автор 4-томной «Флоры Сибири», одной из первых в мире «флор» столь обширной области. Ценные работы о флоре различных областей России вместе с данными о полезных растениях собраны И. И. Лепёхиным, Н. Я. Озерецковским, П. С. Палласом и К. Ф. Ледебуром.
XIX—XX века
XIX век ознаменовался интенсивным развитием естествознания в целом. Бурное развитие получили и все отрасли Б. Решающее влияние на систематику оказала эволюционная теория Ч. Дарвина. Воспринятая большинством ботаников, теория Дарвина поставила перед ними задачу создания филогенетической системы растительного мира, которая отражала бы последовательные этапы развития мира растений. Первые системы 19 в. швейцарских ботаников О. П. Декандоля и его сына А. Декандоля, английских ботаников Дж. Бентама, У. Гукера и др. (с 1825 по 1845 было предложено около 25 подобных систем классификаций растительного мира) ещё не рассматривали проблему происхождения одних групп растений от других, но стремились к наибольшей «естественности», т. е. к соединению в группы растений, наиболее схожих друг с другом по важнейшим признакам их организации. Оперируя с огромным числом растений практически всех континентов, эти системы (особенно Бентама и Гукера и, отчасти, Декандоля) были настолько логично построены, что дожили почти до наших дней (первая — у английских и, отчасти, у североамериканских ботаников, вторая — у ботаников стран французского языка). Тем не менее, будущее принадлежало филогенетическим системам, первая из которых (опубликована в 1875) принадлежит немецкому ботанику А. В. Эйхлеру. Наибольшее же распространение получила система, разработанная немецким ботаником А. Энглером, который совместно со своими сотрудниками в 20-томном сочинении «Естественные семейства растений» (1887-1911) довёл систему растений до рода, а иногда и до вида. Исследования, проведённые главным образом в 1-й половине 20 в., показали, что большинство принципов, положенных Энглером в основу своей системы, были ложными, но его работу нельзя и недооценивать. Противниками взглядов Энглера были американский ботаник Ч. Э. Бесси, немецкий — Х. Галлир и английский — Дж. Хатчинсон. Основные их разногласия с Энглером относились к систематике покрытосеменных (цветковых растений), наиболее примитивной группой которых они считали многоплодниковые (типа магнолии), в то время как Энглер исходной группой покрытосеменных считал однодольные, а среди двудольных — т. н. серёжкоцветные (типа ив и тополей); его противниками были и русские ботаники Х. Я. Гоби, Б. М. Козо-Полянский, А. А. Гроссгейм и др. В последние годы наблюдается некоторое единодушие во взглядах ботаников на принципы построения системы высших растений, широкое признание получила система, разработанная советским ботаником А. Л. Тахтаджяном.
Не меньшее внимание уделялось в XIX и начале XX вв. и низшим растениям. В результате работ миколога Х. Г. Персона, работавшего в Германии и Франции, шведского лихенолога Э. Ахариуса, русских ботаников Л. С. Ценковского, И. Н. Горожанкина, немецких микологов А. де Бари и О. Брефельда, русского миколога М. С. Воронина, советского ботаника А. А. Ячевского и многое др. были собраны обширные сведения о водорослях, грибах, лишайниках, позволившие не только построить их рациональную классификацию, но и оценить их значение в биосфере. Особое развитие получила микология, главным образом в связи со значением грибов в качестве возбудителей болезней с.-х. растений. С этим связано и возникновение фитопатологии как особой дисциплины.
Изучение распространения растений по земному шару относится к XIX — началу XX вв. Основоположник географии растений немецкий натуралист А. Гумбольдт — автор ряда трудов, из которых наибольшее внимание привлекла книга «О закономерностях, наблюдаемых в распространении растений» (т. 1-2, 1816). Первая попытка описать растительность земного шара в связи с условиями климата была сделана немецким учёным А. Гризебахом в его труде «Растительность земного шара…» (1872). Датский ботаник Э. Варминг связывал распространение растений с определенными условиями существования, его книга «Экологическая география растений» (1896) заложила основы новой науки — экологии растений. Одновременно с этими работами в течение всего 19 в. сотни исследователей вели кропотливую работу по составлению региональных «флор». Среди крупнейших изданий такого рода — «Флора Востока» Э. Буасье в 5 тт. (1867-88) и «Флора Британской Индии» Дж. Гукера в 7 тт. (1875-97). Наиболее капитальный труд в этой области — «Флора СССР» в 30 тт. (1934-64), изданная Ботаническим институтом АН СССР под редакцией В. Л. Комарова и Б. К. Шишкина. Растительный мир почти всех областей земного шара описан в соответствующих руководствах, главным образом региональных «флорах». Огромное значение для мировой науки имеет учение Н. И. Вавилова о центрах происхождения культурных растений и географических закономерностях в распределении их наследственных признаков (1926-27). В своих трудах Вавилов впервые представил картину эволюции форм культурных растений в немногочисленных первичных очагах их происхождения. В результате организованных им экспедиций собран ценный фонд мировых растительных ресурсов, составивший богатейшую коллекцию растений, хранящуюся во Всесоюзном институте растениеводства.
Изучение систематики огромного числа растений из всех областей земного шара стимулировало развитие работ в области морфологии растений. Одним из первых морфологов 19 в. был английский ботаник Р. Броун, показавший, что голосеменные отличаются от покрытосеменных голым семезачатком, объяснивший природу цветка у злаков и выполнивший ещё ряд работ по морфологии. Работы Броуна по эмбриологии были продолжены итальянским учёным Дж. Б. Амичи, французским ботаником А. Броньяром и особенно немецким учёным В. Гофмейстером, описавшим процесс оплодотворения у растений. Классические работы Гофмейстера были продолжены его соотечественником Э. Страсбургером и русскими учёными И. Н. Горожанкиным, В. И. Беляевым и С. Г. Навашиным. Горожанкин впервые доказал, что ядра из пыльцевой трубки проникают в яйцеклетку. Беляев предсказал существование у голосеменных подвижных сперматозоидов, которые вскоре были открыты японскими ботаниками С. Хиразе у гинкго и С. Икено у саговника. После работ русского эмбриолога С. Г. Навашина, открывшего двойное оплодотворение, период становления эмбриологии растений как самостоятельной дисциплины был практически завершен.
Анатомия растений, начало которой было заложено ещё в 17 в., стала развиваться особенно интенсивно с середины 19 в. Ее успехи связаны с именами немецких ботаников Х. Моля, К. Санио, давших впервые сведения о микроскопическом строении тела высших растений. К середине 19 в. в анатомии растений наметились два направления, из которых одно в основном интересовалось проблемами строения растений с их систематическим положением и эволюцией структур, в то время как другое больше внимания уделяло физиологическому и экологическому значению тех или иных тканей растения. В числе деятелей первого направления — французы Ф. Э. ван Тигем, Ж. Веск и немец Г. Золередер — автор сводки «Систематическая анатомия двудольных» (1899). Американец Э. Джефри в книге «Анатомия древесных растений» (1917) попытался дать общую картину эволюции анатомических структур у всех высших растений. Его ученики Э. Синнотт, А. Имс и особенно И. У. Бейли создали концепцию об эволюции структуры у высших растений, хорошо увязанную с представлениями Ч. Э. Бесси, Х. Галлира и Дж. Хатчинсона. Среди анатомов второго направления — немецкие ботаники С. Швенденер, Г. Габерландт, советские анатомы В. Ф. Раздорский и В. Г. Александров.
Работы в области экологии и географии растений, а также запросы лесоводства и луговедения привели в конце 19 в. к выделению особой области Б., получившей в СССР название геоботаники, или фитоценологии. Русская и советская школа геоботаников была создана трудами С. И. Коржинского, И. К. Пачоского, Г. И. Тан-фильева, Г. Ф. Морозова, В. В. Алехина, Л. Г. Раменского, А. П. Шенникова и особенно В. Н. Сукачева. Острая необходимость в хозяйственном освоении огромных пространств СССР привела к тому, что проблемы геоботаники явились одними из наиболее насущных. Поэтому геоботаники — наиболее многочисленный отряд советских ботаников.
Североамериканская (Ф. Клементс) и европейская (Ж. Браун-Бланке, Э. Рюбель, А. Тенсли) школы фитоценологии развивались каждая своим путём и только в последнее время наблюдается некоторое сближение точек зрения советских и североамериканских исследователей.
Наука об ископаемых растениях — палеоботаника, зарождение которой можно отнести к 18 в. (И. Шёйхцер, Швейцария), неуклонно развивалась в 19 и 20 вв. В 19 в. трудами исследователей, работавших на всех континентах, были не только описаны десятки тысяч растительных остатков из всех толщ осадочных отложений, но и создана достаточно стройная система ныне вымерших растений, увязанная с их современными потомками. В изучение ископаемых растений, найденных на территории СССР, большой вклад внесли М. Д. Залесский, И. В. Палибин и А. Н. Криштофович.
Характерные черты современного этапа развития Б. — стирание граней между отдельными её отраслями и их интеграция. Так, в систематике растений для характеристики отдельных таксонов всё шире применяют цитологические, анатомические, эмбриологические и биохимические методы. Методы биохимии и физиологии берутся на вооружение экологами и геоботаниками, в результате чего возникает комплексная наука о физиологии растительного сообщества, появление которой предсказывали ещё в 20-х гг. 20 в. русский учёный В. В. Алехин и шведский учёный Э. Дю Рье и которую обычно называют ценофизиологией. Всё больше осознаётся необходимость учитывать в геоботанических и экологических исследованиях роль микроорганизмов — водорослей, грибов, бактерий и актиномицетов; специалисты соответствующего профиля всё чаще работают в контакте с геоботаниками и экологами. Это приводит к расширению поля деятельности фикологов, бактериологов и микологов, изучающих интересующие их организмы в природной обстановке.
Гораздо шире применяется эксперимент в тех областях Б., где ранее господствовало наблюдение. Значительное распространение получили работы в области экспериментальной систематики и геоботаники. В морфологии растений, помимо обычных экспериментальных воздействий, широко используется метод культуры тканей, изолированных от влияния организма как целого.
Разработка новых методов исследования, основанных на достижениях физики и химии, позволила решать задачи, недоступные ранее. Так, в результате использования электронного микроскопа, разрешающая сила которого по сравнению с другими оптическими приборами возросла в сотни раз, были выявлены многие новые детали строения растительной клетки, что с успехом используется не только в анатомии, но и в систематике растений. Методы хроматографии, цитофотометрии и ряд др. позволяют проводить химические анализы с невиданной ранее скоростью и точностью на микроскопических объектах, что применяется практически во всех областях Б. Достижения молекулярной биологии в какой-то мере способствовали выделению физиологии и биохимии растений из общей Б. Вместе с тем эти достижения, которые в будущем позволят раскрыть молекулярные основы онтогенеза и филогенеза растений, открывают новые горизонты в области систематики и морфологии растений. В наших знаниях ещё имеется большой пробел относительно тех механизмов, которые, управляя единым для всех клеток данной особи (или даже вида) генетическим кодом, приводят к поразительным различиям между клетками различных тканей.
Одновременно внимание ботаников всё больше занимают ботанические проблемы в масштабе всей нашей планеты. Вопросы продуктивности фитоценозов, их влияния на водный и газовый режим планеты, проблемы круговорота веществ, баланса энергии и вещества решаются на основе наблюдений, осуществляемых с помощью очень точных и всё более совершенствуемых приборов с автоматическим управлением. Глобальное воздействие человечества на природу, ведущееся иногда без точного учёта возможных последствий, делает эти работы ботаников жизненно важными для судеб цивилизации.
Ведущие ботанические учреждения, международные организации, периодическая печать. Организация научных исследований в области Б. в СССР определяется целой системой ботанических учреждений, находящихся в ведении АН СССР; Академий наук союзных республик; кафедр ботаники университетов, педагогических, фармацевтических и с.-х. высших учебных заведений; ботанических садов различного ведомственного подчинения; отраслевых специализированных (научно-исследовательских) институтов, а также действующей в СССР сети заповедников. Ведущими центрами по отдельным отраслям Б. являются институты АН СССР: Ботанический институт им. В. Л. Комарова (Ленинград), институт физиологии растений им. К. А. Тимирязева (Москва), институт биохимии им. А. Н. Баха (Москва), Институт общей генетики, а также ботанические сады. Ботанические учреждения имеются в филиалах АН СССР и республиканских Академиях наук. Многие вопросы Б. изучает ряд учреждений в Сибирском отделении АН СССР. Культурные растения изучаются во Всесоюзном институте растениеводства им. Н. И. Вавилова (Ленинград) и в ряде его отделений и опорных пунктов.
Кроме того, имеются специализированные институты: кормов (Москва), субтропических культур и зелёных насаждений (Азербайджан), защиты растений (Ленинград), Всесоюзный научно-исследовательский институт лекарственных растений (Москва) и др. Ботанические учреждения оснащены специализированными лабораториями, опытными станциями и экспериментальными базами. В некоторых из них имеются гербарии.
Советские ботаники объединяются Всесоюзным ботаническим обществом (с многочисленными его отделениями), Московским обществом испытателей природы, Географическим обществом Союза ССР и др. При Отделении общей биологии АН СССР функционируют научные проблемные советы по изучению флоры и растительности, по биогеоценологии, а также интродукции и акклиматизации растений. В СССР издаются «Ботанический журнал СССР» (с 1916), журналы «Физиология растений» (с 1954), «Растительные ресурсы» (с 1965), «Микология и фитопатология» (с 1967), а также многочисленные монографии, справочники, руководства и статьи по различным разделам Б. Советские ботаники принимают участие в работе многих зарубежных обществ, журналов, а также конференций, симпозиумов и съездов.




























6. Физиология растений. Рост и развитие растений. Зависимость скорости роста и развития растений от освещенности и температуры.
7. Физиология растений — это наука о процессах, происходящих в растительном организме. Задача физиологии растений заключается в раскрытии сущности этих процессов для того, чтобы научиться рационально использовать их. К.А. Тимирязев писал: «Физиолог не может довольствоваться пассивной ролью наблюдателя, как экспериментатор, он является деятелем, управляющим природой». В этом определении заложена целая программа действия для каждого физиолога. Из него видно, что, с одной стороны, физиология растений — это теоретическая наука, которая опирается на последние достижения физики, химии, молекулярной биологии, с другой стороны, эта наука имеет большое практическое значение для земледелия. К.А. Тимирязев писал: «Физиология растений — это научная основа земледелия». Таким образом, в задачи физиологии растений входят раскрытие сущности процессов, протекающих в растительном организме, установление их взаимной связи, изменение под влиянием среды, механизмов их регуляции, физиологические изыскания и обоснование приемов, направленных на повышение продуктивности сельскохозяйственных культур.
8. Физиология растений заниматься исследованием процессов, происходящих в организмах на различных уровнях организации: биоценотическом, организменном, органном, клеточном, субклеточном, молекулярном и даже субмолекулярном. При изучении физиологических процессов на каждом уровне надо постоянно иметь в виду, что как в клетке, так и в организме в целом все процессы тесно взаимосвязаны. Перестроение любого процесса отражается на всей жизнедеятельности организма. Вместе с тем любой физиологический процесс вынужден рассматриваться как итог долгой эволюции, в течение которой сложилась способность растений к адаптации, приспособлению к изменяющимся условиям среды. Этот путь исследования, в последнее время широко применяемый биологами, привел к развитию молекулярной биологии — раскрытию наследственного кода, механизма биосинтеза белка, основных закономерностей поглощения и использования квантов света в процессе фотосинтеза и т. д. Однако для того чтобы понять закономерности физиологических процессов, протекающих в целом организме, этот подход недостаточен. На основании имеющихся достижений в настоящее время применяют иной путь — переход от изучения более простого к все более сложному уровню организации. В самом общем виде именно этот подход позволяет проследить развитие отдельных физиологических процессов в целом растительном организме на основе следующей общей схемы: ДНК — РНК — белок — фермент — биохимическая реакция — физиологический процесс — свойство клетки — свойство органа — свойство организма. На всех уровнях указанной схемы процессы регулируются. За последние 10 лет большое влияние на физиологию растений оказали достижения молекулярной биологии и генетики. Именно благодаря этому получили новую интерпретацию процессы поступления воды и питательных веществ, вопросы адаптации растений, механизм действия фитогормонов, их роль в росте и развитии. Сейчас фитогормонам, подобно гормонам животных организмов, отводится важнейшее значение как в регуляции различных физиологических процессов, так и в приспособлении к условиям внешней среды. На основе изучения процессов гормонального влияния разработаны многочисленные приемы применения синтетических регуляторов роста в растениеводстве. Отечественная школа физиологии растений всегда обращала внимание на управление растительными организмами с целью повышения их продуктивности. В настоящее время эта проблема стоит во всем мире чрезвычайно остро. Важно охранять природу и одновременно поднять общую продуктивность биосферы. Особенно важным является то, о чем писал еще К.А. Тимирязев,— повысить коэффициент использования солнечной энергии в процессе фотосинтеза.
9. Все более широкое применение принципов, открытых при молекулярно-биологических исследованиях, в изучении процессов на уровне целого растения и растительных сообществ, позволяет подойти к управлению ростом и развитием, а следовательно, и продуктивностью растительных организмов. Изучение физиологии растений имеет большое значение для учителя. Оно поможет ему на уроках дать правильное представление о жизни растительного организма, о его огромной роли в жизни нашей планеты. Вместе с тем именно физиология растений способствует привитию учащимся любовь к экспериментальной опытнической работе. Достижения молекулярной биологии и генетики позволили по новому подойти к пониманию многих физиологических процессов. Поэтому при подготовке рукописи были пересмотрены вопросы о способах реализации генетической информации, дано представление о восприятии и трансдукции химических и физических сигналов. Это дало возможность уточнить механизм действия фитогормонов, а также особенности их взаимодействия. В настоящем издании получили широкое освещение результаты исследований, -проведенные на модифицированных растениях (мутантах и трансгенных культурах). Это позволило уточнить структуру и функцию ряда белков-ферментов (АТФ-синтаза и др.), роль транспортных белков в поступлении воды и ионов, особенности биосинтеза гормонов. Прослеживая этапы развития физиологии растений, можно увидеть, что физиологические функции, которые столетие назад всего-навсего только описывались, в данное время досконально изучены на биохимическом и молекулярном уровнях: значение органоидов, энергетика, ассимиляция С02, многие участки обмена веществ, механизмы регуляции и наследственности. В этих процессах основную роль играет взаимодействие клеточек между собой.